高中一年级新生要依据我们的条件,与高中阶段学科常识交叉多、综合性强,与考查的常识和思维触点广的特征,找寻一套行之有效的学习技巧。智学网为各位同学整理了《高一必学四数学要点》,期望对你的学习有所帮助!
1.高一必学四数学要点
一)两角和差公式
sin=sinAcosplayB+cosplayAsinB
sin=sinAcosplayB-sinBcosplayA?
cosplay=cosplayAcosplayB-sinAsinB
cosplay=cosplayAcosplayB+sinAsinB
tan=/
tan=/
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-^2]
cosplay2a=^2-^2=2^2-1=1-2^2
sin2A=2sinA_cosplayA
三)半角的仅需记住这个:
tan=/sinA=sinA/
四)用二倍角中的余弦可推出降幂公式
^2=/2
^2=/2
五)用以上降幂公式可推出以下常见的化简公式
1-cosplayA=sin^_2
1-sinA=cosplay^_2
2.高一必学四数学要点
设α为任意角,终边相同的角的同一三角函数的值相等:
sin=sinα
cosplay=cosplayα
tan=tanα
cot=cotα
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin=-sinα
cosplay=-cosplayα
tan=tanα
cot=cotα
任意角α与-α的三角函数值之间的关系:
sin=-sinα
cosplay=cosplayα
tan=-tanα
cot=-cotα
借助公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin=sinα
cosplay=-cosplayα
tan=-tanα
cot=-cotα
借助公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin=-sinα
cosplay=cosplayα
tan=-tanα
cot=-cotα
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin=cosplayα
cosplay=-sinα
tan=-cotα
cot=-tanα
sin=cosplayα
cosplay=sinα
tan=cotα
cot=tanα
sin=-cosplayα
cosplay=sinα
tan=-cotα
cot=-tanα
sin=-cosplayα
cosplay=-sinα
tan=cotα
cot=tanα
3.高一必学四数学要点
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h
2、圆锥体:表面积:πR2+πR[的]体积:πR2h/3V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh/6=πh2/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh/12,V=πh/15
4.高一必学四数学要点
直线和平面垂直
直线和平面垂直的概念:假如一条直线a和一个平面内的任意一条直线都垂直,大家就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的断定定理:假如一条直线和一个平面内的两条相交直线都垂直,那样这条直线垂直于这个平面。
直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那样这两条直线平行。③直线和平面平行——没公共点
直线和平面平行的概念:假如一条直线和一个平面没公共点,那样大家就说这条直线和这个平面平行。
直线和平面平行的断定定理:假如平面外一条直线和这个平面内的一条直线平行,那样这条直线和这个平面平行。
直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那样这条直线和交线平行。
5.高一必学四数学要点
方程的根与函数的零点
1、函数零点的定义:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.
3、函数零点的求法:
求方程的实数根;
对于不可以用求根公式的方程,可以将它与函数的图象联系起来,并借助函数的性质找出零点.
4、二次函数的零点:
△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.