数学是逻辑性非常强的一门学科,同学们想要学好数学,需要学会一些的学习技巧与总结数学课本要点。智学网为各位同学整理了《高一下册数学考试知识点总结》,期望对你的学习有所帮助!
1.高一下册数学考试知识点总结 篇一
概念:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,大家规定它的倾斜角为0度。
范围:
倾斜角的取值范围是0°≤α180°。
理解:
注意“两个方向”:直线向上的方向、x轴的正方向;
规定当直线和x轴平行或重合时,它的倾斜角为0度。
意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
公式:
k=tanα
k0时α∈
k0时α∈
k=0时α=0°
当α=90°时k没有
ax+by+c=0倾斜角为A,则tanA=-a/b,A=arctan
当a≠0时,
倾斜角为90度,即与X轴垂直
2.高一下册数学考试知识点总结 篇二
复数概念
大家把形如a+bi的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数表达式
虚数是与任何事物没联系的,是绝对的,所以符合的表达式为:
a=a+ia为实部,i为虚部
复数运算法则
加法法则:+=+i;
减法法则:-=+i;
乘法法则:·=+i;
除法法则:/=[/]+[/]i.
比如:[+]-[+i]=0,终结果还是0,也就在数字中没复数的存在。[+]-[+i]=z是一个函数。
复数与几何
①几何形式
复数z=a+bi被复平面上的点z确定。这种形式使复数的问题可以借用图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式
复数z=a+bi用一个以原点O为起点,点Z为终点的向量OZ表示。这种形式使复数四则运算得到适合的几何讲解。
③三角形式
复数z=a+bi化为三角形式
3.高一下册数学考试知识点总结 篇三
二面角
半平面:平面内的一条直线把这个平面分成两个部分,其中每个部分叫做半平面。
二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
二面角的棱:这一条直线叫做二面角的棱。
二面角的面:这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
直二面角:平面角是直角的二面角叫做直二面角。
4.高一下册数学考试知识点总结 篇四
1、棱柱
棱柱的概念:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这类面围成的几何体叫做棱柱。
棱柱的性质
侧棱都相等,侧面是平行四边形
两个底面与平行于底面的截面是全等的多边形
过不相邻的两条侧棱的截面是平行四边形
2、棱锥
棱锥的概念:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这类面围成的几何体叫做棱锥
棱锥的性质:
侧棱交于一点。侧面都是三角形
平行于底面的截面与底面是一样的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
3、正棱锥
正棱锥的概念:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,如此的棱锥叫做正棱锥。
正棱锥的性质:
各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
5.高一下册数学考试知识点总结 篇五
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h
2、圆锥体:表面积:πR2+πR[的]体积:πR2h/3V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh/3
13、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh/6=πh2/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh/12,V=πh/15