遇见会做的题要仔细;遇见不会做的题要冷静,争取获得更好的成绩。智学网为各位同学整理了《人教版高一下册数学要点》,期望对你的学习有所帮助!
1.人教版高一下册数学要点 篇一
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h
2、圆锥体:表面积:πR2+πR[的]体积:πR2h/3V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh/6=πh2/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh/12,V=πh/15
2.人教版高一下册数学要点 篇二
指数函数
指数与指数幂的运算
1.根式的定义:一般地,假如,那样叫做的次方根,其中>1,且∈_.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式,这里叫做根指数,叫做被开方数.
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±.由此可得:负数没偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没意义
指出:规定了分数指数幂的意义后,指数的定义就从整数指数推广到了有理数指数,那样整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.人教版高一下册数学要点 篇三
求函数值域的办法
①直接法:从自变量x的范围出发,推出y=f的取值范围,合适于简单的复合函数;
②换元法:借助换元法将函数转化为二次函数求值域,合适根式内外皆为一次式;
③辨别式法:运用方程思想,依据二次方程有根,求出y的取值范围;合适分母为二次且∈R的分式;
④离别常数:合适分子分母皆为一次式;
⑤单调性法:借助函数的单调性求值域;
⑥图象法:二次函数必画草图求其值域;
⑦借助对号函数
⑧几何意义法:由数形结合,转化距离等求值域。主如果含绝对值函数
4.人教版高一下册数学要点 篇四
多面体的结构特点
棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。
棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。
棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。
5.人教版高一下册数学要点 篇五
幂函数的性质:
对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:
第一大家了解假如a=p/q,q和p都是整数,则x^=q次根号,假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/,显然x≠0,函数的概念域是∪.因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:
排除去为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除去为0这种可能,即对于x<0x="">0的所有实数,q不可以是偶数;
排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。
总结起来,就能得到当a为不一样的数值时,幂函数的概念域的不同状况如下:假如a为任意实数,则函数的概念域为大于0的所有实数;
假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要依据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。
6.人教版高一下册数学要点 篇六
关于集合的定义:
确定性:作为一个集合的元素,需要是确定的,这就是说,不可以确定的对象就不可以构成集合,也就是说,给定一个集合,任何一个对象是否这个集合的元素也就确定了。
互异性:对于一个给定的集合,集合中的元素肯定是不一样的,这就是说,集合中的任何两个元素都是不一样的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
无序性:判断一些对象时候构成集合,重点在于看这类对象是不是有明确的规范。
集合可以参考它含有些元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;
在自然数集内排除0的集合叫做正整数集,记作N+或N;
整数全体构成的集合,叫做整数集,记作Z;
有理数全体构成的集合,叫做有理数集,记作Q;
实数全体构成的集合,叫做实数集,记作R。