高二数学必学一考试知识点整理是智学网为大伙收拾的,要学好数学不是一件容易的事,平时得多学多练才行。
1.高二数学必学一考试知识点整理 篇一
算法定义:在数学上,现代意义上的“算法”一般是指可以用计算机来解决的某一类问题是程序或步骤,这类程序或步骤需要是明确和有效的,而且可以在有限步之内完成.
算法的特征:
①有限性:一个算法的步骤序列是有限的,需要在有限操作之后停止,不可以是无限的.
②确定性:算法中的每一步应该是确定的并且能有效地实行且得到确定的结果,而不应当是模棱两可.
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后继步骤,前一步是后一步的首要条件,只有实行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
④不性:求解某一个问题的解法可能不是的,对于一个问题可以有不一样的算法.
⑤常见性:不少具体的问题,都可以设计适当的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
2.高二数学必学一考试知识点整理 篇二
特殊棱锥的顶点在底面的射影地方:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.
⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.
⑦每一个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
⑧每一个四面体都有内切球,球心
3.高二数学必学一考试知识点整理 篇三
概率性质与公式
加法公式:P=p+P-P,特别地,假如A与B互不相容,则P=P+P;
差:P=P-P,特别地,假如B包括于A,则P=P-P;
乘法公式:P=PP或P=PP,特别地,假如A与B相互独立,则P=PP;
全概率公式:P=∑PP,它是由因求果,
贝叶斯公式:P=PP/∑PP,它是由果索因;
假如一个事件B可以在多种情形A1,A2,....,An下发生,则用全概率公式求B发生的概率;假如事件B已经发生,需要它是由Aj引起的概率,则用贝叶斯公式.
二项概率公式:Pn=Cp^k^,k=0,1,2,....,n。当一个问题可以看成n重贝努力试验时,要考虑二项概率公式.
4.高二数学必学一考试知识点整理 篇四
不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:假如二次项系数含有字母,要分二次项系数是正数、零和负数三种状况进行讨论。
2)不等式对应方程的根:假如一元二次不等式对应的方程的根可以通过因式分解的办法求出来,则依据这两个根的大小进行分类讨论,这个时候,两个根的大小关系就是分类标准,假如一元二次不等式对应的方程根不可以通过因式分解的办法求出来,则依据方程的辨别式进行分类讨论。通过不等式复习资料可以帮你愈加熟练的运用不等式的要点,比如用放缩法证明不等式这种方法与借助均值不等式求最值的九种方法如此的解题思路需要再做题的过程中总结出来。
5.高二数学必学一考试知识点整理 篇五
1.几何概型的概念:假如每一个事件发生的概率只与构成该事件地区的长度成比率,则称如此的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式:P=构成事件A的地区长度;试验的全部结果所构成的地区长度
3.几何概型的特征:
1)试验中所大概出现的结果有无限多个;
2)每一个基本事件出现的可能性相等.
4.几何概型与古典概型的比较:一方面,古典概型具备有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的地区长度有关,即试验结果具备无限性,是不可数的。这是二者的区别;其次,古典概型与几何概型的试验结果都具备等可能性,这是二者的共性。
6.高二数学必学一考试知识点整理 篇六
(1)总体和样本:
①在统计学中,把研究对象的全体叫做总体.
②把每一个研究对象叫做个体.
③把总体中个体的总数叫做总体容量.
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,大家称它为样本.其中个体的个数称为样本容量.
(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特征是:每一个样本单位被抽中的可能性相同(概率相等),样本的每一个单位完全独立,彼此间无肯定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。一般只不过在总体单位之间差异程度较小和数目较少时,才使用这种办法。
(3)简单随机抽样常见的办法:
①抽签法
②随机数表法
③计算机模拟法
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异状况;
②允许误差范围;
③概率保证程度。
(4)抽签法:
①给调查对象群体中的每个对象编号;
②筹备抽签的工具,推行抽签;
③对样本中的每个个体进行测量或调查